ASSESSMENT OF HEAT RECOVERY AN RECOVERY EFFICIENCY OF A SEASONAL THERMAL ENERGY STORAGE IN A MOIST POROUS MEDIUM
Mots-clés :
heat storage, long term, underground, heat recovery, recovery efficiencyRésumé
Thermal energy storage has received a great interest by researchers and industrials as part of designing new systems able to store and deliver thermal energy efficiently for long periods. The aim of this preliminary work is to simulate performances of a promising seasonal heat storage system, which is a heat exchanger buried underground in a moist porous medium. Several case studies have been simulated according to different types of hot fluid carrier and moisture content in a porous medium. Comsol Multiphysics software was used to model heat exchange between a fluid carrier flowing through a GHX, and a partially saturated porous medium composed essentially of gravel and situated at about 0.5m underground. Numerical discretization was realized by finite elements method. System performances were evaluated for a one-year period in order to get a good estimation of long-term heat storage and recovery. The results showed that the use of gasoline as a working fluid will yield higher temperature levels than the other fluids especially during cold season; however, use of water allowed for the storage and recovery of bigger heat energy than gasoline or glycol can do. Furthermore, soil moisture content did not seem to have any influence the whole process.
Références
Medjelled, A., Benchatti, A., Bounif, A. (2008), Experimental Model for the study of heat transfer in unsaturated soil: Case of underground thermal storage, pp. 95-102, Vol.1, Journal of heat and technology.
Chiasson, D., (2010), Modeling Horizontal Ground Heat Exchangers in Geothermal Heat Pump Systems, Comsol conference proceedings, Boston.
Lanini, S., Delaleux, F., Py, X., Olivès, R., Ngyuen, D., (2014), Improvement of Borehole Thermal Energy Storage Design Based on Experimental and Modelling Results Energy and buildings.
Diersch, J. G., Bauer, D., Heidemann, W., Ruhaak, W., Schatzl, P. (2011), Finite element modeling of borehole heat exchanger systems – Part1. Fundamentals, pp. 1122-1135, Vol.37, Journal of Computer and geosciences.
Diersch, J. G., Bauer, D., Heidemann, W., Ruhaak, W., Schatzl, P. (2011), Finite element modeling of borehole heat exchanger systems – Part2. Numerical simulation, pp. 1136-1147, Vol.37, Journal of Computer and geosciences.
Rabin, Y., Korin, E., Sher, E. (1991), A simplified model for helical heat exchanger for long-term energy storage in soil, Proceedings of the EUROTHERM Seminar N° 18.
Welsch, B., Ruhaak, W., Schulte, D. O., Bar, K., Homuth, S., Sass, I. (2015), A comparative study of medieum deep borehole thermal energy storage systems using numerical modelling, Proceedings of World Geothermal Congress.
Téléchargements
Publié-e
Comment citer
Numéro
Rubrique
Licence
Les auteurs publiant dans cette revue acceptent les termes suivants :- Les auteurs détiennent le droit d'auteurs et accordent à la revue
le droit de première publication, avec l’ouvrage disponible simultanément [SPÉCIFIER LA PÉRIODE DE TEMPS] après publication, sous la licence Licence d’attribution Creative Commons qui permet à d'autres de partager l'ouvrage en en reconnaissant la paternité et la publication initiale dans cette revue. - Les auteurs peuvent conclure des ententes contractuelles additionnelles et séparées pour la diffusion non exclusive de la version imprimée de l'ouvrage par la revue (par ex., le dépôt institutionnel ou la publication dans un livre), accompagné d'une mention reconnaissant sa publication initiale dans cette revue.
- Les auteurs ont le droit et sont encouragés à publier leur ouvrage en ligne (par ex., dans un dépôt institutionnel ou sur le site Web d'une institution) avant et pendant le processus de soumission, car cela peut mener à des échanges fructueux ainsi qu'à un nombre plus important, plus rapidement, de références à l’ouvrage publié (Consulter The Effect of Open Access).