EFFET DU CONDITIONNEMENT DES TRANSMISSIVITES SUR LES CARACTERISTIQUES SPECTRALES DE LA MATRICE DE L’ECOULEMENT EN MILIEU POREUX

Auteurs-es

  • A BENALI Université d’Oran Es Sénia

Mots-clés :

groundwater modeling, condition number, ill-conditioning, modèles numériques, conditionnement, rayon spectral, hydrogéologie

Résumé

Usually to determine a measure of the degree of ill-conditioning of an algebraic system, we invoke a condition number for the coefficients matrix. In groundwater modeling these coefficients are depending on the
parameters of the heteregeneous porous medium i.e. trans- missivities T. Therefore an estimate of the condition number of the flow matrix is of a considerable interest to assess the accuracy and the reliability of the solution relevant to the numerical method. Ill-conditioning ofthe system may ascribe to many well-known sources.
Herein we inspect condition numbers of flow matricesarising in groundwater modeling flow through synthetics porous media slowly variable. The flow matrices are build up via the numerical generation of conditional log T fields whose variability is indexed on the corresponding variograms. Numerical experiments of Monte Carlo type allowed to study multiple replications of the flowmatrices incorporating available information into estimating the log T values. Results obtained confirm what it was roughly suspected : condition number and spectral radius of the flow matrix are sensitive to the constraints of the local information only if the distance between these points is greater than the correlation length. In such case, the number of the measurement points increases the influence of the standard deviation σY. Otherwise, the a prioriinformation is unvaluable i.e.redundant

Biographie de l'auteur-e

A BENALI, Université d’Oran Es Sénia

Laboratoire Eau et Environnement

Références

Gehlar L.W. – Stochastic subsurface hydrology. Prentice Hall Inc., Englewood Cliffs, New Jersey, 1993.

Delhomme J.P. – Spatial variability and uncertaity in

groundwater flow parameters : a geostatistical approach.

Water Res. Research 15 (2), p. 1979.

Kitanidis, P.K. et Vomvoris, E.G.- A geostatistical approach to the inverse problem in groundwater modeling (steady state)

and one-dimensional simulations. Water Resources Research,

vol. 19, no. 3, p. 677-690, 1983.

Mizell S.A., Gutjahr A.L. et Gehlar L.W. – Stochastic analysis of spatial variability in two-dimensional steady groundwater flow assuming stationary and non-stationary heads. Water Resources Research, vol. 18, no. 4, p. 1053-1067, 1982.

Rubin, Y. et Dagan, G. - Stochastic identification of

transmissivity and effective recharge in steady groundwater

flow : 1. Theory. Water Resources Research, vol. 23, no. 7, p.

-1192, 1987.

Dong A. – Estimation géostatistique des phénomènes régis par des équations aux dérivées partielles, Thèse de Doctorat,

ENMS Paris, 1990.

Zhang, D. Numerical solutions to statistical moment equations of groundwater flow in nonstationary, bounded, heterogeneous media. Water Resources Research, vol. 34, no. 3, p. 529-538, 1998.

McLaughin D. , Wood E.F. – A distributed parameter

approach for evaluating the accuracity of groundwater model prediction, 1. Theory. Water Res. Research 24 (7), p.1034-1047, 1988.

Zimmerman D.A., De Marsily, G., Gotway C.A., Marietta,

M.G., Axness, C.L., R.L., Bras, R.L., Carrera, J., Dagan G.,

Davies, P.B.,Gallegos, D.P., Galli, A., Gómez-Hernandez, J.J., Grindrid, P., Gutjahr,A.L., Kitanidis, P.K, Lavenue, A.M., Mclaughin, D., Neuman, S.P.,Ramarao, B.S., Ravenne, C. et Rubin, Y. (1998). A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resources Research, vol. 34, no. 6, p.1373-1413.

Ababou R., McLaughlin D., Gehlar L.W., Tompson A.F.B. –

Numerical simulation of saturated/unsaturated flow fields in

randoly heteregeneous porous media. International symp.

On the stochastic approach to subsurface flow. CNRS, Greco 35, ed. De Marsily, Montvillargenne, p. 294-312, 1985.

Wilkinson J.H. – Rounding errors in algebraic process.

Englewoods Cliffs, N.J., Prentice Hall, 1963.

La Porte et Vignes J. – Algorithmes numériques. Analyse et mise en œuvre, tome 1, Arithmétique des ordinateurs.

Systèmes linéaires, éditions Technip, Paris, 1974.

Larson J.L., Sameh A.H. – Algorithms for roundoff error

analysis – A relative approach. Computing, 24, p. 275-297,

Ehrel J. – Statistical estimation of roundoff errors and

condition numbers. Rapport de recherche n° 1490, INRIA, ,

p 27, septembre 1991.

Golub G.H., Van Loan C.F. – Matrix computations.

University press, 1993.

Ehrel J. – Experiments with data perturbations to study

condition numbers and numerical stability. Computing, 51,

, p. 29-44.

Ebrahimian R., Baldick R. – State estimator condition

number analysis. IEEE Transactions on Power Systems, vol

n°2, may 2001.

El Ghaoui L. – Inversion error, condition number and

approximate inverses of uncertain matrices. Linear Algebra

and its Applications, 342, (1-3), 2002.

Dunagan J.and Teng S.H. – Smoothed analysis of Renegar’s condition number for linear programming in SIAM

Conference on Optimization, 2002.

Mosé R., Siegel P., Ackerer Ph., and Chavent, G. –

Application of the mixed hybrid finite element approximation in a groundwater flow model : Luxury or necessity ? Water resources research, vol. 30, pp. 3001-3012, 1994.

Hoteit H., Erhel J., Mosé R., Phillipe B. and Ackerer P.

Numerical reliability and CPU time for the mixed methods

applied to solve the flow problems in porous media. Rap. De

recherche INRIA n° 4228, p.46, 2001.

Benali A.M. – Hétérogénéités des milieux poreux et

instabilité spectrale de la matrice de l’écoulement, Sciences

& Technologie, n°21, p.75-84, 2004.

Ahmed S., de Marsily G. – Comparison of geostatistical

methods for estimating transmissivity using data on

transmissivity and specific capacity. Water resources

research, vol. 23, n°9, p 1717-1737, 1987.

Deutch C.V. et Journel A.G. - GSLIB : Geostatistical

software Library and User’s Guide. Oxford University

Press, 1992.

Bear J. – Dynamics of fluidsin porous media. Elsevier, New

York, 1972.

Freeze R.A., Marsily de G., Smith L., Massman J. – Some

uncertainties about uncertainty. Proceedings of a DOE/AECL Conf. On Geostatistical sensivity and uncertainty methods for groundwater flow and radionuclides transport, San Francicisco, 1989.

Hoeksema, R.J., Kitanidis, P.K. - Comparison of Gaussian

conditional mean and kriging estimation in the geostatistical

solution of the inverse problem. Water Resources Research,

vol. 21, no. 6, p. 825-836, 1985.

Mantoglu A., Wilson J.L.- Simulation of random fields with

the turnig bands methods. Report n° 264, Ralph Parsons

Lab., Dept of Civil Eng., MIT, 1981.

Carr J.R. – Program Cosim : Co-conditional simulation of

spatial data. A fortran code available from the GMM BBS,

dept of geol. engineering university of Missouri, 1992.

Englund E. , Sparks A. – Geostatistical Environmental

Assesment Software. Env. Monitoring Systems Lab. US

EPA, 1991.

Yates S.R., Yates M.V. – Geostatistic for waste management. Robert Kerr Env. Research Lab., Ada, US EPA, 1990.

Benali A. & de Backer L.W. – Identifiability versus

heterogeneity in groundwater modelling systems. Sciences

& Technologie, n°19, p.75-84, 2003.

Téléchargements

Publié-e

2005-06-01

Comment citer

BENALI, A. (2005). EFFET DU CONDITIONNEMENT DES TRANSMISSIVITES SUR LES CARACTERISTIQUES SPECTRALES DE LA MATRICE DE L’ECOULEMENT EN MILIEU POREUX. Sciences & Technologie. B, Sciences De l’ingénieur, (23), 16–23. Consulté à l’adresse https://revue.umc.edu.dz/b/article/view/399

Numéro

Rubrique

Articles

Articles similaires

1 2 3 4 5 > >> 

Vous pouvez également Lancer une recherche avancée d’articles similaires à cet article.