SUPERVISION NEURO-FLOUE A APPRENTISSAGE GENETIQUE D’UN PID ROBUSTE

المؤلفون

  • A SOUKKOU Université de Jijel
  • A KHELLAF Université Ferhat Abbas-Sétif
  • S LEULMI Université de Skikda

الكلمات المفتاحية:

PID flou، algorithme génétique، réseau de neurones، Fuzzy PID، genetic algorithms، neural networks

الملخص

This article presents the application of a new generation of fuzzy logic supervisor (FLS) to the highly nonlinear systems. The dominant parameters characterizing the base of fuzzy knowledge: scaling factors of the Input/Output (I/O) variables,membership functions and the rule consequences are optimized by using the Genetic Algorithms (GA). The conventional PID in its improved form, where the coefficients of different actions KP, KI and KD are nonlinear variables. A fuzzy inference
system with multilayer neural network structure with genetic training plays the role of supervisor who allows giving optimal functions to these coefficients.
The fuzzy structure is specified by a combination of the mixed Takagi-Sugeno’s and Mamdani’s fuzzy Reasoning TSM-FR.The mixed integer-binary optimal coding is utilized to construct the chromosomes, which define the same of necessary prevailing parameters for the conception of the desired supervisor. This new fuzzy supervisor stands out by a non standard gain (output scaling factor) which varies linearly with the fuzzy inputs. It becomes similar to the conventional PID controller with non-linearly variable coefficients. Computer simulation indicates that the designed fuzzy supervisor is satisfactory in PID control of a nonlinear system ‘Inverted Pendulum’.

السير الشخصية للمؤلفين

A SOUKKOU، Université de Jijel

Département d'Electronique

A KHELLAF، Université Ferhat Abbas-Sétif

Institut d'Electronique

S LEULMI، Université de Skikda

Institut d'Electrotechnique

المراجع

Yongho Lee and Sunwon Park, "PID controllers tunning for

desired closed-loop responses for SI/SO systems", Aiche

journal, Vol. 44, No. 4, January 1998, 106-115.

Aström, K.J. and T. Hägglund, “PID Controllers: Theory,

Design, and Tuning”,Instrument Society of America, 1995.

Marlin, T. E, “Process Control. Designing Processes and

Control Systems for Dynamic Performance”,Mc Graw-Hill,

L. A. Zadeh, "Fuzzy sets", Information and Control, Vol. 8,

, pp. 338-353.

Jhy-Shing Roger Jang and Chuen-Tsai Sun, "Neuro fuzzy

modeling and control", Proceedings of the IEEE, Vol. 83, No.

, March 1995, pp. 378-406.

David E. Goldberg, ‘‘Algorithmes génétiques: exploration,

optimisation et apprentissage automatique’’, AddisonWesley, 1994.

J. Holland, ‘‘Adaptation in natural and artificial systems’’,

University of Michigan Press, 1975.

Yigang Shi and P.C. Sen, "ANew Defuzzification Method

for Fuzzy Control of Power Converters”, IEEE porceeding

on Fuzzy Systems, 2000.

Mamdani, E. H., “Application offuzzy algorithms for simple

dynamic plant”, Proc. IEE, D-121, 1974, pp. 1558-1588.

Mamdani, E. H., and Assilian, “An experiment in linguistic

synthesis with a fuzzy logic controller”, International Journal

of Man- Machine Studies, Vol. 7, 1975, pp. 1-13.

M. Sugeno and G. T. Kang, "Structure identification of fuzzy model", Fuzzy sets and systems, Vol. 28, 1988, pp.15-33.

Jhy-Shing Roger Jang and Chuen-Tsai Sun, "Neuro fuzzy

modeling and control", Proceedings of the IEEE, Vol. 83, No.

, March 1995, pp. 378-406.

X. W. Yan, Z. D. Deng and Z.Q. Sun, “Genetic TakagiSugeno-fuzzy reinforcement learning”, Proceeding of the 2001 IEEE, International Symposium On Intelligent Control,

September 5-7, 2001, Mexico city, Mexico, pp. 67-72.

Chia-Feng Juang and Yuan-Chang Liou, “A TSK-type

recurrent fuzzy network for dynamic systems processing via

supervised and reinforcement learning”, 2001 IEEE International Fuzzy Systems Conference, pp. 240-243.

Hao Ying, "Constructing nonlinear variable gain controllers

via the Takagi-Sugeno fuzzy control", IEEE transactions on

fuzzy systems, Vol. 6, No. 2, May 1998, pp. 226-234.

A. Homaifar and Ed Mc Cormick, "Simultaneous design of

membership functions and rules sets for fuzzy controllers

using genetic algorithms", IEEE Transactions On Fuzzy Systems, Vol. 3, No. 2, May 1995, pp. 161-176.

Jinwoo Kim, Yoonkeon Moon, and Bernard P. Zeigler,

"Designing fuzzy net controllers using genetic algorithms",

IEEE control systems, June 1995, pp. 66-72.

Jinwoo Kim, and Bernard P. Zeigler, "Designing fuzzy logic

controllers using a multiresolutional search paradigm", IEEE

Transaction On Fuzzy Systems, Vol. 4, No. 3, August 1996,

pp. 213-226.

Sanjay Kumar Sharma and George W. Irwin, “Fuzzy Coding

of Genetic Algorithms”, IEEE Transactions on Evolutionary

Computation, Vol. 7, No. 4, August 2003, pp 344-355.

Teo Lian Seng et al., “Tuning of a neuro-fuzzy controller by genetic algorithm”, IEEE Transactions OnSystems,Man, and

Sybernetics-Part B: Cybernetics, Vol. 29, No. 2, April 1999,

pp. 226-236.

التنزيلات

منشور

2005-06-01

كيفية الاقتباس

SOUKKOU, A., KHELLAF, A., & LEULMI, S. (2005). SUPERVISION NEURO-FLOUE A APPRENTISSAGE GENETIQUE D’UN PID ROBUSTE. مجلة علوم و تكنولوجيا ب، علوم الهندسة, (23), 95–106. استرجع في من https://revue.umc.edu.dz/b/article/view/409

إصدار

القسم

Articles

المؤلفات المشابهة

<< < 1 2 

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.