RNA 2D Structure Prediction: A review

Auteurs-es

  • H CHEHILI Université frères Mentouri Constantine 1
  • M.Abdelhafid HAMIDECHI Université frères Mentouri Constantine 1

Mots-clés :

RNA, Secondary structure, Nussinov algorithm, Dynamic programming

Résumé

RNA, a macromolecule that provides several biological functions: gene translation into proteins, regulation of gene expression, prediction of 3D structure and RNA function, etc. In this work, we will review the prediction of RNA secondary structures by dynamic programming based on the classical Nussinov algorithm. We took into account four possible links between the nucleotides forming the RNA polymer chain (canonical GC, CG, AU AU bonds, wobble bonds: GU or UG, etc.). The program tested in this work shows that the developed algorithm correctly predicts the different base pairs that enter the 2D structure of the RNA.

Bibliographies de l'auteur-e

H CHEHILI, Université frères Mentouri Constantine 1

Faculté des sciences de la Nature et de la Vie. Département de Microbiologie

M.Abdelhafid HAMIDECHI, Université frères Mentouri Constantine 1

Faculté des sciences de la Nature et de la Vie. Département de Microbiologie

Références

Savill, N., D. Hoyle, and P. Higgs. 2001. Rna sequence evolution with secondary structure constraints: Comparison of substitution rate models using maximum likelyhood methods. Genetics, 157: 399-411.

Zuker M. 1989. On finding all suboptimal foldings of an RNA molecule. Science. 7 (244) : 48-52.

Akutsu T. (2000). Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Applied Mathematics. 104 : 45-62

Sponer J. E. Spackova N., Leszczynski J., Sponer J. (2005). Principles of RNA base pairing : Structures and energies of the trans Watson-Crick/sugar edge base pairs. J. Phys. Chem. B, 109 (22) : 11399–11410.

Burkowski F. J. (2009). Structural Bioinformatics: An Algorithmic Approach. CRC Press. Taylor &

Francis Group.ISBN :13-978-1-4200-1178-1. 429p.

Palkovsky M., Bielecki W. (2017). Parallel tiled Nussinov RNA folding loop nest generated using both dependence graph transitive closure and loop skewing. BMC Bioinformatics. 18 : 290-299.

Nussinov R., Pieczenik G., Griggs JR., Kleitman DJ. (1978). Algorithms for loop matchings. SIAM J Appl Math. ; 35(1) : 68–82. doi: 10.1137/0135006.

Zuker M., Stiegler P. (1981). Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. ;9(1):133–48. doi: 10.1093/nar/9.1.133.

Zhao C., Sahni S., (2017). Cache and energy efficient algorithms for Nussinov’s RNA Folding. BMC Bioinformatics. 18 (Suppl. 15) : 518

Dauzon, S., Bendoraitis, A., Ravindran, A. (2016). Django: Web Development with Python. Packt Publishing Ltd.

Pop, D. P., & Altar, A. (2014). Designing an MVC model for rapid web application development. Procedia Engineering, 69, 1172-1179.

Téléchargements

Publié-e

2016-12-31

Comment citer

CHEHILI, H., & HAMIDECHI, M. (2016). RNA 2D Structure Prediction: A review. Sciences & Technologie. C, Biotechnologies, (44), 16–24. Consulté à l’adresse https://revue.umc.edu.dz/c/article/view/2869

Numéro

Rubrique

Articles

Articles similaires

1 2 > >> 

Vous pouvez également Lancer une recherche avancée d’articles similaires à cet article.