MISE EN EVIDENCE ET DISTRIBUTION DE LA CAVEOLINE-1 DANS LE SYSTEME HYPOTHALAMO-NEUROHYPOPHYSAIRE DE RATS WISTAR EUHYDRATE ET DESHYDRATE

Auteurs-es

  • S LOUNIS USTHB, Alger
  • L DORBANI-MAMINE USTHB, Alger

Mots-clés :

Caveoline-1, Système hypothalamo-neurohypophysaire, Immunohistochimie, Caveolin-1, hypothalamic-neurohypophyseal system, Immunohistochemistry

Résumé

Notre travail consiste à étudier, par une approche immunohistologique, la distribution des cavéolines dans le SHN de rats normaux et d'en établir les rôles possibles en les étudiant suite à un stimulus hydrique en l'occurrence une privation d'eau de 6 jours. Les résultats montrent que la cavéoline-1 est exprimée dans la neurohypophyse, le NSO et le NPV. Elle est  retrouvée dans les neurones magnocellulaires, dans les astrocytes, les pituicytes et dans les terminaisons nerveuses et dilatations subterminales. La cavéoline-1 est aussi retrouvée à ces niveaux chez le rat déshydraté mais sa distribution cellulaire est modifiée et son expression semble diminuée dans le NSO et le NPV. Les résultats que nous avons obtenus nous avons permis d'émettre diverses hypothèses; que cette protéine pourrait jouer au niveau de l'axe hypothalamoneurohypophysaire, un rôle dans la modulation de la signalisation, l'endocytose et probablement dans la plasticité morphologique de ce système.

Bibliographies de l'auteur-e

S LOUNIS, USTHB, Alger

Neurochimie/Laboratoire de Biologie et Physiologie
des Organismes
FSB

L DORBANI-MAMINE, USTHB, Alger

Neurochimie/Laboratoire de Biologie et Physiologie
des Organismes
FSB

Références

- Ghorbel M.T., Sharman G., Leroux M., Barrett T., Donovan D.M., Becker K.G. and Murphy D., Microarray Analysis Reveals Interleukin-6 as a Novel Secretory Product of the Hypothalamoneurohypophyseal System. Biol. Chem., 278(21): 19280-19285 2003.

- Wang Y.F. and HattonG.I., Mechanisms underlying oxytocin-induced excitation of supraoptic neurons: prostaglandin mediation of actin polymerization, J. Neurophysiol., 95(6):3933-47 2006.

- Tobin V.A. and LudwigM., The role of the actin cytoskeleton in oxytocin and vasopressin release from rat supraoptic nucleus neurons, J Physiol., 582(3) 1337 -48 2007

- Ozawa E., Yoshida M., Suzuki A., Mizuno Y., Hagiwara Y. and Noguchi S., Dystrophin-associated proteins in muscular dystrophy. Hum. Mol. Genet., 4:1711-1716 1995.

- Razani B., Woodman S.E. and Lisanti P., Caveolae:

From Cell Biology to Animal Physiology. Pharmacol. Rev., 54: 431–467 2002.

- Lidov H.G.W., Dystrophin in the nervous system, Brain Pathol., 6: 63-77 1996

- Dorbani-Mamine L., M.-E. Stoeckel, V. Jancsik, Ayad G. and Rendon A., Dystrophins in neurohypophysial lobe of normal and dehydrated rats: Immunolocalization and biochemical characterization, NeuroRport 9: 3582-3587 1998

- Morris J.F. and Nordman J.J., Membrane recapture after hormone release from nerve endingings in the neuronal lobe of the rat pituitary gland. Neurosci., 5: 639-649 1980.

- Tagawa A., Mezzacasa A., Hayer A., Longatti A., Pelkmans L., Helenius A., Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargotriggered, vesicular transporters. J. Cell Biol., 170:769 –779 2005

- Smart E.S., Graf G.A., Niven MA., Sessa W.C., Engelman J.A., Scherer P.E., Okamoto T. and Lisanti P., Caveolin, liquid-ordred domain, and signal transduction. Mol. Cell. Biol., 19(11): 7289-7304 1999.

- Allen J. A., Zu J.Z., R. H. Dave, A. Bhatnagar, B. L. Roth and M.M. Rasenick, Caveolin-1and lipid microdomains regulate Gs trafficking and attenuate Gs/adenylyl cyclise signalling, Mol. Pharmacol., 76:1082–1093, 2009.

- Cameron P.L., Ruffin J.W., Bollag., Rasmussen R.

and Cameron R.S., Identification of caveolin and caveolin-related proteins in brain. J. Neurosci. 17(24): 9520-9535 1997.

- Mikol D.D., Hong H.L., Cheng H.L. and Feldman E.L., Caveolin-1 expression in Schwann cells. Glia, 27: 39-52 1999.

- Vergintino D., Robertson D., Errede M., Benagiano ., Tauer U., Roncali L. and Bertossi M., Expression of caveolin-1 in humain brain microvessels. Neurosc., 115(1): 145-152 2002.

- Ramirez M.I., Pollack L., Millien G., Cao Y.X., Hinds A. and Williams M.C., The -isoform of caveolin-1 is a marker of vasculogenesis in early lung development, J. Histochem. Cytochem., 50(1) : 33-42 2002

- Woodman S.E., Ashton A.W., Schubert W., Lee H., Williams T.M., Medina F.A., Wyckoff J.B., Combs T.P., Lisanti M.P.. Caveolin-1 knockout mice show an impaired angiogenic response to exogenous stimuli. Am. J. Pathol., 162:2059 –2068 2003.

- Hatton G.I., Function-related plasticity in hypothalamus. Annu. Rev. Neurosci., 20:375-397, 1997.

- Fitsanakis V.A., Piccola G., Aschner J.L. and Aschner M., Manganese Transport by Rat Brain Endothelial (RBE4) Cell-Based Transwell Model in the Presence of Astrocyte Conditioned Media, J. Neurosc. Res., 81:235–243 2005.

- Masserini M., Palestini P. and Pitto M., Glycolipideenriched caveolae and caveolae-like domains in the nervous system. J. Neurochem., 73: 1-11 1999.

- Lafarga M., Berciano M.T., Del Olmo E., Andres M.A., Pzos A., Osmotic stimulation induced changes in the expression of β-adrenergic receptors and nuclear volume of astrocytes in supraoptic nucleus of the rat. Brain Res., 588:311-316 1992

- Piascik M.T, García-Cazarin M.L. and Post S.R., Regulation of the Cellular Localization and Trafficking of the Adrenergic Receptors, The Adrenergic Receptors In the 21st Century Ed., Dianne M. Perez, 2006.

- Tweedle C.D. and Hatton G.I., Morphological adaptability at neurosécrétory axonal endings of the neurovascular contact zone of the neurohypophyses. Neuroscience., 20: 241-246 1987.

- Podar K., Tai Y.T., Cole C.E., Hideshima T., Sattler M., Hamblin A., Mitsiades N., Schlossman R.L., Davies F.E., Morgan G.J., Munshi N.C., Chauhan D. and Anderson K.C., Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells. J. Biol.Chem., 278(8): 5794–5801 2003.

- Volonte' D., Galbiati F., Pestell R.G., and Lisanti M.P.,. Cellular stress induces the tyrosine phosphorylation of caveolin-1 (Y14) via activation of p38 mitogen-activated protein (MAP) kinase and c-Src kinase: Evidence for caveolae, the actin cytoskeleton, and focal adhesions as mechanical sensors of osmotic stress, J. Biol. Chem., 276, 8094-8103 2001.

- Prat A., Biernacki K., Wosik K. and Antel J.P, Glial cell influence on the human blood-brain barrier, Glia 36:145–155 2001.

- Jiang M. and Cheng G., Ca2_ Regulation of Dynamin-Independent Endocytosis in Cortical Astrocytes, Journal of Neurosciences, 2009 ; 29 (25) :8063– 8074

- Henley J.R., E.W.A. Krueger, B.J. Oswald and M.A. Mc Niven, Dynamin-mediated Internalization of Caveolae, J. Cell Biol., 141( 1) : 85–99 1998.

- Ito J. I., Nagayasu Y., Kato K., Sato R. and Yokoyama S., Apolipoprotein A-I induces translocation of cholesterol, phospholipids, and caveolin-1 to cytosol in rat astrocytes. J. Biol. Chem., 227(10): 7929-7935 2000.

- Jasmin J.F., S. Malhotra, M. S. Dhallu, I. Mercier, D.

M. Rosenbaum and M. P. Lisanti, Caveolin-1 Deficiency Increases Cerebral Ischemic Injury , Circ. Res., 100: 721-729 2007.

- Nag S., Venugopalan R. and Stewart D.J., Increased

caveolin-1 expression precedes decreased expression of

occludin and claudin-5 during blood-brain barrier breakdown, Acta Neuropathologica, 114, 459-469 2007

- Bobak J.B. and Salm A.K., Plasticité of the ventral

glial limitants subjacent to the supraoptic nucleus. J.Comp.Neurology., 376:188-197 1996.

- Porter J.T. and Mccarthy K. D., Astrocytic neurotransmitter receptors in situ and in vivo. Progress in Neurobiolgy., 51: 439-455 1997.

- Kocsis K., Kiss J., Görcs T. and Halász B., Metabotropic glutamate receptor in vasopressin, CRF and VIP hypothalamic neurones, Neuroreport, 9 : 4029-4033 1998.

- Burgueño J., Enrich C., Canela E.I., Mallol J., Luis

C., Franco R. and Ciruela F., Metabotropic glutamate

type 1α receptor localizes in low-density caveolin-rich

plasma membrane fractions. J.Neurochem., 86(4): 785-791 2003.

- Head B. P., Patel H. H., Tsutsumi Y. M., Hu Y.,

Mejia T., Mora R. C., Insel P. A., Roth D. M., Drummond J. C. and Patel P. M.,Caveolin-1 expression is essential for N-methyl-Daspartate receptor-mediated Src and extracellular signal-regulated kinase 1/2 activation and protection of primary neurons from ischemic cell death. FASEB J. 22, 828–840 2008

- Galbiati F., Volonte D., Gil O., Zanazzi G., Salzer J. L., Sargiacomo M., Scherer P.E., Engelman J.A., Parenti M., Okamoto T. and Lisanti M.P., Expression of caveolin-1 and -2 in differentiating PC12 cells and dorsal roots ganglion neurons. Proc. Natl. Acad. Sci., 96: 10257-10262 1998.

- Burbach J.P.H., Luckman S.M., Murphy D. and Gainer H., Gene regulation in magnocellular hypothalamo-neurohypophysial sytem. Physiol.Rev., 81(3):1197-1267 2001

- Braun J.E, and Madison D.V., A novel SNAP25-aveolin complex correlates with the onset of persistent synaptic potentiation. J. Neurosci., 20(16): 5997-6006 2000.

Téléchargements

Publié-e

2011-06-01

Comment citer

LOUNIS, S., & DORBANI-MAMINE, L. (2011). MISE EN EVIDENCE ET DISTRIBUTION DE LA CAVEOLINE-1 DANS LE SYSTEME HYPOTHALAMO-NEUROHYPOPHYSAIRE DE RATS WISTAR EUHYDRATE ET DESHYDRATE. Sciences & Technologie. C, Biotechnologies, (33), 23–30. Consulté à l’adresse https://revue.umc.edu.dz/c/article/view/325

Numéro

Rubrique

Articles

Articles similaires

1 2 > >> 

Vous pouvez également Lancer une recherche avancée d’articles similaires à cet article.