ENTROPY GENERATION FOR NATURAL CONVECTION DUE TO HEAT TRANSFER IN AN INCLINED CAVITY
PDF

Keywords

Natural convection
enclosure
inclined enclosure
Nusselt number

How to Cite

NAAS, T., LASBET, Y., & KEZRAN, C. (2017). ENTROPY GENERATION FOR NATURAL CONVECTION DUE TO HEAT TRANSFER IN AN INCLINED CAVITY. Journal of Sciences & Technology , 2(2). Retrieved from https://revue.umc.edu.dz/st/article/view/3097

Abstract

The thermal control in many systems is widely accomplished applying mixed convection process due to its low cost, reliability and easy maintenance. Typical applications include the aircraft electronic equipment, rotating-disc heat exchangers, turbo machinery, and nuclear reactors, etc.  Natural convection in an inclined square enclosure heated via wall heater has been studied numerically. Finite volume method is used for solving momentum and energy equations in the form of stream function–vorticity. The right and left walls are kept at a constant temperature, while the other parts are adiabatic. The range of the inclination angle covers a whole revolution. The method is validated for a vertical cavity. A general power law dependence of the Nusselt number with respect to the Rayleigh number with the coefficient and exponent as functions of the inclination angle is presented. For a fixed Rayleigh number, the inclination angle increases or decreases is found.
PDF

References

S. Ostrach, «Natural convection in enclosures».

Heat Trans. 110 (1988) 1175–1190.

G. Huelsz, R. Rechtman, «Heat transfer due to natural convection in an inclined square cavity using the lattice Boltzmann equation method» , International Journal of Thermal Sciences 65 (2013) 111e119.M.C. Cullagh and J. Nelder, « Generalised Linear Models », London Chapman and Hall, 1983.

G. Vahl Davis, J.P. Jones, «Natural convectionin a square cavity: a comparison study», Int. J. Numer. Methods Fluids 3 (1983) 227–248.

M.M. Ganzarolli, L.F. Milanez, «Natural convection in rectangular enclosures heated from below and symmetrically cooled from the sides», Int. J. Heat Mass Trans. 38 (1995) 1063–1073.

O. Aydin, A. Unal, T. Ayhan, «A numerical study on buoyancy-driven flow in an inclined square enclosure heated and cooled on adjacent walls», Numer. HeatTrans. A 36 (1999) 585–589.

A. Bejan, «Natural convection from L-shaped corners with adiabatic and cold isothermal horizontal walls», J. Heat Trans. 116 (1994) 519–520.

Barakos et al, «Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions», International journal for numerical methods in fluids, vol. 18, 695-719 (1994).

N. C. Markatos and K. A. Pericleous, «Laminar and turbulent natural convection in an enclosed cavity», Inr. J. Heat Mass Transfer, 27, 775-772 (1984).

Yasin Varol a,*, Hakan. Oztop, Ahmet Koca, Filiz Ozgen, «Natural convection and fluid flow in inclined enclosure with a corner heater», Applied Thermal Engineering 29 (2009).

H.S. Chu, S.W. Churchill, C.V.S. Patterson, «The effect of heater size, location, aspect ratio, and boundary conditions on two-dimensional, laminar, natural convection in rectangular channels», J. Heat Trans. 98 (1976) 194–201.

P. Chao, H. Ozoe, S. Churcihill, N. Lior, «Laminar natural convection in an inclined rectangular box with the lower surface half-heated and half insulated», J. Heat Trans. 105 (1983) 425–432.

K. Ben Nasr, R. Chouikh, C. Kekreni, A. Guizani, «Numerical study of the natural convection in cavity heated from the lower corner and cooled from the ceiling», Appl. Thermal Eng. 26 (2006) 772–775.

Q.H. Deng, G.F. Tang, Y. Li, «A combined temperature scale for analyzing natural convection in rectangular enclosures with discrete wall heat sources», Int. J. Heat Mass Trans. 45 (2002) 3437–3446.

N. Nithyadevi, P. Kandaswamy, J. Lee, «Natural convection in a rectangular Cavity with partially active side walls” », Int. J. Heat Mass Trans. 50 (2007) 4688–4697.

H. Turkoglu, N. Yucel, «Effect of heater and cooler locations on natural convection in square cavities», N. Heat Trans. A 27 (1995) 351–358.

J.C. Patterson, S.W. Armfield, «Transient features natural convection in a cavity», J. Fluid Mech. 219 (1990) 469–497.

Les auteurs publiant dans cette revue acceptent les termes suivants :

  1. Les auteurs détiennent le droit d'auteurs et accordent à la revue
    le droit de première publication, avec l’ouvrage disponible simultanément [SPÉCIFIER LA PÉRIODE DE TEMPS] après publication, sous la licence Licence d’attribution Creative Commons qui permet à d'autres de partager l'ouvrage en en reconnaissant la paternité et la publication initiale dans cette revue.
  2. Les auteurs peuvent conclure des ententes contractuelles additionnelles et séparées pour la diffusion non exclusive de la version imprimée de l'ouvrage par la revue (par ex., le dépôt institutionnel ou la publication dans un livre), accompagné d'une mention reconnaissant sa publication initiale dans cette revue.
  3. Les auteurs ont le droit et sont encouragés à publier leur ouvrage en ligne (par ex., dans un dépôt institutionnel ou sur le site Web d'une institution) avant et pendant le processus de soumission, car cela peut mener à des échanges fructueux ainsi qu'à un nombre plus important, plus rapidement, de références à l’ouvrage publié (Consulter The Effect of Open Access).

Downloads

Download data is not yet available.