AN ADVANCED MODEL FOR DOPANT DIFFUSION IN HEAVILY IMPLANTED POLYCRYSTALLINE SILICON THIN FILMS
Keywords:
modeling, boron, diffusion, grain-growth, grain-boundaries, polysiliconAbstract
This work is dedicated to the study of the transient enhanced diffusion (TED) of boron in polycrystalline-silicon thin films. This phenomenon is a major problem for the development of P+ polysilicon gate metal-oxide-semiconductor (MOS) devices; for future polysilicon technologies. The highly doped, P+, gate is made by ion implantation followed by thermal post-implantation annealing. In these conditions, the boron atoms diffuse in a transient and enhanced way which can be some thousand times to some hundred times faster than in equilibrium. At the same time, the solubility limt excess due to the very strong doping level and ion-implantation damages, lead to various complex phenomena
sush as dopant trapping, segregation, and clustering. Taken all these phenomena into account, we propose a theoretical one-dimensional two-stream diffusion model adapted to the granular structure of polycrystalline-silicon and to the effects of the strong-concentrations. This model includes dopant clustering in grains as well as in grain boundaries. Moreover, growth of grains and energy barrier height are coupled with the dopant diffusion coefficients and the process temperature based on thermodynamic concepts. The adjustment of the simulated profiles with the experimental SIMS profiles, for short treatment times ranging between 1 and 30 minutes at different temperatures (700, 750 and 800°C), will allow the study of the boron transient enhanced diffusion; as well as the understanding of the grainsgrowth effect on boron diffusion during annealing
References
B. Yu, D. H. Ju, W. C. Lee, N. Kepler, T. J. King and C. Hu,
“Gate engineering for deep-submicron CMOS transistors,”
IEEE, Trans. Electron Devices, Vol. 45, (1998), pp. 1253-
A. J. Walker, S. B. Herner, T. Kumar and En-H. Chen, “On
the conduction mechanism in polycrystalline silicon thin-film
transistors,” IEEE, Trans. Electron Devices, Vol. 51, No. 11,
(2004), pp. 1856-1866.
J. R. Pfiester, F. K. Baker, T. C. Mele, H. H. Tseng, P. J.
Tobin, J. D. Hayden, J. W. Miller, C. D. Gunderson and L. C.
Parillo, “The effects of boron penetration on P+ polysilicon
gated PMOS devices,” IEEE Trans. Electron Devices, Vol.
, No. 8, (1990), pp. 1842-1847.
T. Aoyama, K. Suzuki, H. Tashiro, Y. Tada, H. Arimoto, and
K. Horiuchi, “Flatband voltage shift in PMOS devices caused
by carrier activation in p+ polycrystalline silicon and by boron
penetration,” IEEE, Trans. Electron Devices, Vol. 49, (2002),
pp. 473-479.
L. Pelaz, V. C. Venezia, H. J. Gossmann, G. H. Gilmer, A. T.
Fiory, and C. S. Rafferty, “Activation and deactivation of
implanted B in Si,” Appl. Phys., Lett., Vol. 75, No. 5, (1999),
pp. 662-664
Masashi Uematsu, “Simulation of high-concentration boron
diffusion in silicon during post-implantation annealing,” Jpn.
J. Appl. Phys., Vol. 38, (1999), pp. 3433-3439.
M. Jaraiz, G. H. Gilmer and J. M. Poate, “Atomistic
calculations of ion implantation in Si: point defect and
transient enhanced diffusion phenomena,” Appl. Phys., Lett.,
Vol. 68, No. 3, (1996), pp. 409-411.
H. Schaber, R. V. Criegern and I. Weitzel, “Analysis of
polycrystalline silicon diffusion sources by secondary ion
mass spectrometry,” J. Appl. Phys., Vol. 58, No. 11, (1985),
pp. 4036-4042.
Masashi Uematsu, “Simulation of clustering and transient
enhanced diffusion of boron in silicon,” J. Appl. Phys., Vol.
, No. 9 (1998), pp. 4781-4787.
J. Marcon, L. Ihaddadene-Le Coq, K. Masmoudi and K.
Ketata, “An investigation on the modeling of boron-enhanced
diffusion of ultralow energy implanted boron in silicon,”
Materials Science and Engineering, B, 124-125 (2005), pp.
-418.
R. Mahamdi, F. Mansour, E. Scheid, P.T. Boyer and L.
Jalabert, “Boron diffusion and activation during heat
treatement in heavily doped polysilicon thin films for P+
Metal-Oxyde-Semiconductor transistors gates,” Jpn. J. Appl.
Phys., Vol. 40, (2001), pp. 6723-6727.
R. W. Cahn, P. Haasen, and E. J. Kramer, “Materials Science
and Technology: Electronic structure and properties of
semiconductors,” Ed. Weinheim New York: Basel-
Chambridge, Vol. 4, (April 1991), pp. 254-275.
S. Solmi, F. Baruffaldi and R. Canteri, “Diffusion of boron in
silicon during post-implantation annealing,” J. Appl. Phys.,
Vol. 69, No. 4, (1991), pp. 2135-2142.
S. Batra, M. Manning, C. Dennison, A. Sultan, S.
Bhattacharya, K. Park, S. Banerjee, M. Lobo, G. Lux, C.
Kirschbaum, J. Noberg, T. Smith and B. Mulvaney,
“Discontinuity of B-diffusion profiles at the interface of
polycrystalline Si and single crystal Si,” J. Appl. Phys., Vol.
, No. 8, (1993), pp. 3800-3804.
L. Pelaz, G. H. Gilmer, H. J. Gossmann, C. S. Rafferty, M.
Jaraiz and J. Barbella, “B cluster formation and dissolution in
Si: A scenario based on atomic modeling,” Appl. Phys., Lett.,
Vol. 74, (1999), pp. 3657-3660.
H. Puchner and S. Selberherr, “An advanced model for
dopant diffusion in polysilicon,” IEEE, Trans. Electron
Devices, Vol. 42, No 10, (1995), pp. 1750-1754.
A. D. Sadovnikov, “One-dimensional modeling of high
concentration boron diffusion in polysilicon-silicon
structures,” Solid-State Electronics, Vol. 34, No. 9, (1991),
pp. 969-975.
V. Probst, H. J. Bohm, H. Schaber, H. Oppoler and I.
Weitzel, “Analysis of polysilicon diffusion sources,” J.
Electrochem Soc., Vol. 135, No. 3, (1988), pp. 671-676.
R. B. Fair, “Concentration profiles of diffused dopants in
silicon,” Impurity Doping Processes in Silicon, F. F. Y. Wang,
Ed. New York: North Holland, (1981), pp. 315-442.
J. Y. W. Seto, “The electrical properties of polycrystalline
silicon films,” J. Appl. Phys., Vol. 46, No. 12, (1975), pp.
-5254.
G. Baccarani, B. Ricco and G. Spadini, “Transport properties
polycrystalline silicon films,” J. Appl. Phys., Vol. 49, (1978),
pp. 5565-5570.
S. K. Jones and C. Hill, “Modeling dopant diffusion in
polysilicon,” Simulation of Semiconductor Devices and
processes, Vol. 3, (1988), pp. 441-449.
H.-J. Kim and C.V. Thompson, “Kenetic modeling of grains
growth in polycrystalline silicon films doped with phosphorus
or boron,” J. Electrochem. Soc., Vol. 135, (1988), pp. 2312-
M. M. Mandurah, K. C. Saraswat, C. R. Helms and T. I.
Kamins, “Dopant segregation in polycrystalline silicon,” J.
Appl. Phys., Vol. 51, No. 11, (1980), pp. 5755-5763.
B. Swaminathan, E. Demoulin, T. W. Sigmon, R. W. Dutton
and R. Rif, “Segregation of arsenic to the grain boundaries in
polycrystalline silicon,” J. Electrochem Soc., Vol. 127, No.
, (1988), pp. 2227-2229.
M. M. Mandurah, K. C. Saraswat, C. R. Helms and T. I.
Kamins, “A model for conduction in polycrystalline silicon –
Part II: comparison of theory and experiment,” IEEE, Trans.
Electron Devices, Vol. ED-28, No. 10, (1981), pp. 1171-1176.
J. Akhtar, S. K. Lamichhane, P. Sen, “Thermal-induced
normal grain growth mechanism in LPCV polysilicon film,”
Materials Science in Semiconductor Processing, Vol. 8,
(2005), pp. 476-482.
G. Giroult, A. Nouailhat and M. Gauneau, “Study of Wsi2 /
polycrystalline silicon / monocrystalline silicon structure,”
Appl. Phys., Vol. 67, (1990), pp. 515-523.
Downloads
Published
How to Cite
Issue
Section
License
Les auteurs publiant dans cette revue acceptent les termes suivants :- Les auteurs détiennent le droit d'auteurs et accordent à la revue
le droit de première publication, avec l’ouvrage disponible simultanément [SPÉCIFIER LA PÉRIODE DE TEMPS] après publication, sous la licence Licence d’attribution Creative Commons qui permet à d'autres de partager l'ouvrage en en reconnaissant la paternité et la publication initiale dans cette revue. - Les auteurs peuvent conclure des ententes contractuelles additionnelles et séparées pour la diffusion non exclusive de la version imprimée de l'ouvrage par la revue (par ex., le dépôt institutionnel ou la publication dans un livre), accompagné d'une mention reconnaissant sa publication initiale dans cette revue.
- Les auteurs ont le droit et sont encouragés à publier leur ouvrage en ligne (par ex., dans un dépôt institutionnel ou sur le site Web d'une institution) avant et pendant le processus de soumission, car cela peut mener à des échanges fructueux ainsi qu'à un nombre plus important, plus rapidement, de références à l’ouvrage publié (Consulter The Effect of Open Access).