IMPROVING MECHANICAL PROPERTIES OF API X60/X70 WELDED PIPELINE STEEL

Authors

  • A GUEDRI University Center of Souk Ahras
  • B MERZOUG University Center of Souk Ahras
  • A ZEGHLOUL University of Metz

Keywords:

Micro alloying, TMCP, Controlled rolling, Controlled cooling, processing parameters, Mechanical properties.

Abstract

The aim of this study is to improving microstructure and mechanical properties of the weldable gas pipeline steel using laboratory mill. To achieve the required microstructure and mechanical properties of thermo mechanically processed HSLA steels, it is necessary to have an idea about the role of composition and process parameters. The large numbers of parameters obtained during the production process in the plant were systematically changed to optimize the strength and toughness properties. The optimized parameters were used for the production of the API X60/X70 steel. However, the controlled cooling after rolling should result in transformed products that provide excellent combination of strength and toughness. The coiling at an appropriate temperature have the advantage of the precipitation strengthening, giving further rise to the high yield strength and also improvement in toughness of the steel. The coiling temperature is a decisive parameter because it determines the beginning of the formation of fine precipitations. Therefore, four different laboratory cooling systems were used, in this study to simulate the rolling conditions of a real industrial Thermo mechanically controlled process (TMCP), as close as possible and to check the possibilities of improving the mechanical  properties of the welded pipeline steel.

Author Biographies

A GUEDRI, University Center of Souk Ahras

Department of Maintenance

 

B MERZOUG, University Center of Souk Ahras

Department of Maintenance

A ZEGHLOUL, University of Metz

LPMM Laboratory, UMR
CNRS 7554, Paul Verlaine

 

References

Malcolm Gray J. Technology of microalloyed steel for large

diameter pipe. Int J Pres Ves Pip 1974; 2:95–122.

Sage AM. Effect of rolling schedules on structure and

properties of 0.45-percent vanadium weldable steel for X70

pipelines. Met Technol 1981;8:94–102.

Hart PHM, Mitchell PS. The effect of vanadium on the

toughness of welds in structural and pipeline steels. Weld J 1995; 74:S239–48.

Irvine KJ, Gladman T, Orr J, Pickerin FB. Controlled rolling

of structural steels. J Iron Steel I 1970; 208:717.

Matsubar H, Osuka T, Kozasu I, Tsukada K. Investigation of

metallurgical factors in production of high-strength steel plate with high toughness by controlled rolling. Trans Iron Steel I Jpn 1972; 12:480.

May MJ, Gladman T, Walker EF. Recent developments in

ultra high strength steels and their applications. PhilosTransRoyal Soc, London Series 1976; 282:377.

Brownrigg A, Boelen R. Yielding behavior of some Mn– Mo–Nb pipeline steels. Met Forum 1981; 4:245–52.

Shimizu H, Gibbon WM. Evaluating the dynamic toughness

properties of pipeline steels. Can Metall Quart 1982; 21:103–9.

Pluvinage G, Krasowsky AJ, Krassiko VW. Influence of mechanical and metallurgical parameters on dynamic fracture-toughness of 2 pipeline steels. Mem Etud Sci Rev Met 1992;89:137–52.

Iung T, Difant M, Pineau A. Resistance and toughness of

pipeline steels – crack-arrest in cleavage fracture. Rev Metall-Cahiers Informations Tech 1995;92:227–39.

Schofiel R, Weiner RT. Simulating HAZ toughness in pipeline steels. Met Constr Br Weld J 1974; 6:45–7.

Croft NH, Deardo AJ, Gray JM. The effects of filler metal

composition, heat input and post-weld heat-treatment on the

properties of submerged-arc welds in X70 grade linepipe steel. J Met 1982; 35:A64.

Hulka K, Peters P, Heisterkamp F. Trends in the development of large-diameter pipe steels. Steel Transl 1997;

:64–70.

Hulka K, Heisterkamp F. Development trends in HSLA steels for welded constructions. Mater Sci Forum 1998; 284:343–50.

Heisterkamp F, Hulka K. Low-carbon Mn–Ni–Nb steel. 2.

Weldability. Met Technol 1984; 11:545–9.

Mujahid M, Lis AK, Garcia CI, De Ardo AJ. HSLA-100 steels: influence of aging heat treatment on microstructure and properties. J Mater Eng Perform 1998; 7:247–57.

Zhao MC, Yang K, Shan YY. The effects of hermomechanical control process on microstructures and

mechanical properties of a commercial pipeline steel. Mater Sci Eng a 2002; 335:14–20.

Zhao MC, Yang K, Shan YY. Comparison on strength and

toughness behaviors of microalloyed pipeline steels with acicular ferrite and ultrafine ferrite. Mater Lett 2003; 57:1496–500.

Zhao MC, Tang B, Shan YY, Yang K. Role of microstructure

on sulfide stress cracking of oil and gas pipeline steels. Metal

Mater Trans A 2003; 34A:1089–96.

DeArdo AJ. New challenges in the Thermomechanical

processing of HSLA steels. Mater Sci Forum 2003;426–432:49–56.

Bleck W, Frehn A, Kechagias E, Ohlert J, Hulka K. Control

of microstructure in TRIP steels by niobium. Mater Sci Forum 2003; 426:43–8.

Kneissl AC, Baldinger P. Structure and properties of TM

processed HSLA steels. J de Phys 1993; IV 3:77–82.

Wang Shyi-Chin, Hsieh Rong-Iuan, Liou Horng-Yih, Yang

Jer-Ren. The effects of rolling processes on the microstructure and mechanical properties of ultra low carbon bainitic steels. Mater Sci Eng 1992; 157A:29W–36W.

M. C¸ H.M. Ertunc¸, M. Yılmaz. An artificial neural network

model for toughness properties in microalloyed steel in consideration of industrial production conditions. Materials

and Design 28 (2007) 488–495

S. Datta, M.K. Banerjee : Mapping the input–output relationship in HSLA steels through expert neural network,

Materials Science and Engineering A 420 (2006) 254–264

A.Guedri et al: Effect of different rolling schedules on the

mechanical properties and microstructure of C Mn (V-Nb-Ti)

pipeline steel, (I.RE.M.E.), 1, 4 (2007) 397-405.

A.Guedri et al: An artificial neural network model for

predicting mechanical properties of CMn (V-Nb-Ti) pipeline steel in industrial production conditions, (I.RE.M.E.), 1, 6 (2007) 397-405.

G.R. Speich, in: A.R. Marder, J.I. Goldstein (Eds.), Proc. Int.

Conf. on Phase Transformation in Ferrous Alloys, TMSAIME,

Warrendale, PA, 1984, pp. 341– 389.

A. Sandberg, W. Roberts, in: A.J. DeArdo, G.A. Ratz, P.J.

Wray (Eds.), Conf. Proc. TMS-AIME, Warrendale, USA, 1982, pp. 405– 431.

A.K. Sinha, Physical metallurgy of microalloyed high strength low alloy steels, Proceedings of the Emerging Technologies for New Materials and Product-Mix of the Steel Industry, Cincinnati, OH, 1991, pp. 195.

Published

2004-06-29

How to Cite

GUEDRI, A., MERZOUG, B., & ZEGHLOUL, A. (2004). IMPROVING MECHANICAL PROPERTIES OF API X60/X70 WELDED PIPELINE STEEL. Sciences & Technology B, Engineering Sciences, (29), 51–58. Retrieved from https://revue.umc.edu.dz/b/article/view/262

Issue

Section

Articles

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.