IMPROVING MECHANICAL PROPERTIES OF API X60/X70 WELDED PIPELINE STEEL
Keywords:
Micro alloying, TMCP, Controlled rolling, Controlled cooling, processing parameters, Mechanical properties.Abstract
The aim of this study is to improving microstructure and mechanical properties of the weldable gas pipeline steel using laboratory mill. To achieve the required microstructure and mechanical properties of thermo mechanically processed HSLA steels, it is necessary to have an idea about the role of composition and process parameters. The large numbers of parameters obtained during the production process in the plant were systematically changed to optimize the strength and toughness properties. The optimized parameters were used for the production of the API X60/X70 steel. However, the controlled cooling after rolling should result in transformed products that provide excellent combination of strength and toughness. The coiling at an appropriate temperature have the advantage of the precipitation strengthening, giving further rise to the high yield strength and also improvement in toughness of the steel. The coiling temperature is a decisive parameter because it determines the beginning of the formation of fine precipitations. Therefore, four different laboratory cooling systems were used, in this study to simulate the rolling conditions of a real industrial Thermo mechanically controlled process (TMCP), as close as possible and to check the possibilities of improving the mechanical properties of the welded pipeline steel.
References
Malcolm Gray J. Technology of microalloyed steel for large
diameter pipe. Int J Pres Ves Pip 1974; 2:95–122.
Sage AM. Effect of rolling schedules on structure and
properties of 0.45-percent vanadium weldable steel for X70
pipelines. Met Technol 1981;8:94–102.
Hart PHM, Mitchell PS. The effect of vanadium on the
toughness of welds in structural and pipeline steels. Weld J 1995; 74:S239–48.
Irvine KJ, Gladman T, Orr J, Pickerin FB. Controlled rolling
of structural steels. J Iron Steel I 1970; 208:717.
Matsubar H, Osuka T, Kozasu I, Tsukada K. Investigation of
metallurgical factors in production of high-strength steel plate with high toughness by controlled rolling. Trans Iron Steel I Jpn 1972; 12:480.
May MJ, Gladman T, Walker EF. Recent developments in
ultra high strength steels and their applications. PhilosTransRoyal Soc, London Series 1976; 282:377.
Brownrigg A, Boelen R. Yielding behavior of some Mn– Mo–Nb pipeline steels. Met Forum 1981; 4:245–52.
Shimizu H, Gibbon WM. Evaluating the dynamic toughness
properties of pipeline steels. Can Metall Quart 1982; 21:103–9.
Pluvinage G, Krasowsky AJ, Krassiko VW. Influence of mechanical and metallurgical parameters on dynamic fracture-toughness of 2 pipeline steels. Mem Etud Sci Rev Met 1992;89:137–52.
Iung T, Difant M, Pineau A. Resistance and toughness of
pipeline steels – crack-arrest in cleavage fracture. Rev Metall-Cahiers Informations Tech 1995;92:227–39.
Schofiel R, Weiner RT. Simulating HAZ toughness in pipeline steels. Met Constr Br Weld J 1974; 6:45–7.
Croft NH, Deardo AJ, Gray JM. The effects of filler metal
composition, heat input and post-weld heat-treatment on the
properties of submerged-arc welds in X70 grade linepipe steel. J Met 1982; 35:A64.
Hulka K, Peters P, Heisterkamp F. Trends in the development of large-diameter pipe steels. Steel Transl 1997;
:64–70.
Hulka K, Heisterkamp F. Development trends in HSLA steels for welded constructions. Mater Sci Forum 1998; 284:343–50.
Heisterkamp F, Hulka K. Low-carbon Mn–Ni–Nb steel. 2.
Weldability. Met Technol 1984; 11:545–9.
Mujahid M, Lis AK, Garcia CI, De Ardo AJ. HSLA-100 steels: influence of aging heat treatment on microstructure and properties. J Mater Eng Perform 1998; 7:247–57.
Zhao MC, Yang K, Shan YY. The effects of hermomechanical control process on microstructures and
mechanical properties of a commercial pipeline steel. Mater Sci Eng a 2002; 335:14–20.
Zhao MC, Yang K, Shan YY. Comparison on strength and
toughness behaviors of microalloyed pipeline steels with acicular ferrite and ultrafine ferrite. Mater Lett 2003; 57:1496–500.
Zhao MC, Tang B, Shan YY, Yang K. Role of microstructure
on sulfide stress cracking of oil and gas pipeline steels. Metal
Mater Trans A 2003; 34A:1089–96.
DeArdo AJ. New challenges in the Thermomechanical
processing of HSLA steels. Mater Sci Forum 2003;426–432:49–56.
Bleck W, Frehn A, Kechagias E, Ohlert J, Hulka K. Control
of microstructure in TRIP steels by niobium. Mater Sci Forum 2003; 426:43–8.
Kneissl AC, Baldinger P. Structure and properties of TM
processed HSLA steels. J de Phys 1993; IV 3:77–82.
Wang Shyi-Chin, Hsieh Rong-Iuan, Liou Horng-Yih, Yang
Jer-Ren. The effects of rolling processes on the microstructure and mechanical properties of ultra low carbon bainitic steels. Mater Sci Eng 1992; 157A:29W–36W.
M. C¸ H.M. Ertunc¸, M. Yılmaz. An artificial neural network
model for toughness properties in microalloyed steel in consideration of industrial production conditions. Materials
and Design 28 (2007) 488–495
S. Datta, M.K. Banerjee : Mapping the input–output relationship in HSLA steels through expert neural network,
Materials Science and Engineering A 420 (2006) 254–264
A.Guedri et al: Effect of different rolling schedules on the
mechanical properties and microstructure of C Mn (V-Nb-Ti)
pipeline steel, (I.RE.M.E.), 1, 4 (2007) 397-405.
A.Guedri et al: An artificial neural network model for
predicting mechanical properties of CMn (V-Nb-Ti) pipeline steel in industrial production conditions, (I.RE.M.E.), 1, 6 (2007) 397-405.
G.R. Speich, in: A.R. Marder, J.I. Goldstein (Eds.), Proc. Int.
Conf. on Phase Transformation in Ferrous Alloys, TMSAIME,
Warrendale, PA, 1984, pp. 341– 389.
A. Sandberg, W. Roberts, in: A.J. DeArdo, G.A. Ratz, P.J.
Wray (Eds.), Conf. Proc. TMS-AIME, Warrendale, USA, 1982, pp. 405– 431.
A.K. Sinha, Physical metallurgy of microalloyed high strength low alloy steels, Proceedings of the Emerging Technologies for New Materials and Product-Mix of the Steel Industry, Cincinnati, OH, 1991, pp. 195.
Downloads
Published
How to Cite
Issue
Section
License
Les auteurs publiant dans cette revue acceptent les termes suivants :- Les auteurs détiennent le droit d'auteurs et accordent à la revue
le droit de première publication, avec l’ouvrage disponible simultanément [SPÉCIFIER LA PÉRIODE DE TEMPS] après publication, sous la licence Licence d’attribution Creative Commons qui permet à d'autres de partager l'ouvrage en en reconnaissant la paternité et la publication initiale dans cette revue. - Les auteurs peuvent conclure des ententes contractuelles additionnelles et séparées pour la diffusion non exclusive de la version imprimée de l'ouvrage par la revue (par ex., le dépôt institutionnel ou la publication dans un livre), accompagné d'une mention reconnaissant sa publication initiale dans cette revue.
- Les auteurs ont le droit et sont encouragés à publier leur ouvrage en ligne (par ex., dans un dépôt institutionnel ou sur le site Web d'une institution) avant et pendant le processus de soumission, car cela peut mener à des échanges fructueux ainsi qu'à un nombre plus important, plus rapidement, de références à l’ouvrage publié (Consulter The Effect of Open Access).