EARTH’S TOMOGRAPHY WITH SUPERNOVA NEUTRINOS OSCILLATION IN THE LMA RANGE.
PDF

Keywords

Supernova neutrinos
neutrino oscillation
Earth’s matter effects

How to Cite

LEBBAL, S., & MIMOUNI, J. (2018). EARTH’S TOMOGRAPHY WITH SUPERNOVA NEUTRINOS OSCILLATION IN THE LMA RANGE. Journal of Sciences & Technology , 3(2). Retrieved from https://revue.umc.edu.dz/st/article/view/3110

Abstract

Low energy neutrinos can be used to probe the Earth’s density from the study of the Earth’s matter effects on their oscillation. In this work, we will show how this can be achieved with neutrinos coming from a future Galactic Supernova explosion ( ), using an analytic formula that describes the Earth’s matter effects on their oscillation. We will focus, in this study, on the linear case where neutrinos travel short distances ( ) through the Earth, showing how a Tomogram of the Earth (a 2D image from a 3D body) can be created just by making use of the information obtained from the observation of the Earth’s matter effects, which is the case for specific choices of the neutrino oscillation parameters and the neutrino mass schemes. In our work, we will treat the case where the neutrino oscillations are explained by the large mixing angle solution to the solar neutrino problem (LMA), combined with the normal mass hierarchy.
PDF

References

W. Winter. Learning about the Earth’s interior using the propagation of neutrinos. Earth, Moon and Planets (From the issue entitled "Neutrino Geophysics Proceedings of Neutrino Sciences 2005"). Vol. 99. (2005). pp. 285-307.

M.C. González-García, et al. Radiography of the Earth’s core and mantle with atmospheric neutrinos. Phys. Rev. Lett. Vol. 100. (2008).

T. Ohlsson and W. Winter. Reconstruction of the Earth’s mantle density profile using a single neutrino baseline. Phys. Lett. B. Vol. 512. (2001). pp. 357.

W. Winter. Probing the absolute density of the Earth’s core using a vertical neutrino beam. Phys. Rev. D. Vol. 72. (2005).

E.K. Akhmedov, M.A. Tortola and J.W.F. Valle. Geotomography with solar and supernova neutrinos. JHEP. Vol. 06. (2005). pp. 053.

K. Kotake, et al. Explosion mechanism, neutrino burst and gravitational wavein core collapse Supernovae. Rep. Prog. Phys. Vol. 69. (2006).

A. Yu. Smirnov. The MSW effect and solar neutrinos. preprint, hep-ph/0305106. (2003). < http://arxiv.org/abs/hep-ph/0305106 >

A.S. Dighe and A.Y. Smirnov. Identifying the neutrino mass spectrum from a Supernova neutrino burst. Phys. Rev. D. Vol. 62. (2000).

K. Takahashi, et al. The Earth effects on the Supernova neutrino spectra. Phys. Lett. B. Vol. 510. (2001). pp. 189-196.

A.S. Dighe, et al. Signature of Supernova neutrinos oscillation in the Earth’s mantle and core. preprint, hep-ph/0311172 .(2003). < http://arxiv.org/abs/hep-ph/0311172>.

C. Lunardini and A. Yu. Smirnov. Supernova neutrinos: Earth matter effects and neutrino mass spectrum. Nucl. Phys. B. Vol. 616. (2001). pp. 307-348.

E.K. Akhmedov, M.A. Tortola and J.W.F. Valle. A simple analytic three-flavor description of the day-night effect in the solar neutrino flux. JHEP. Vol. 05. (2004). pp. 057.

E.K. Akhmedov, et al. Series expansion for three-flavor neutrino oscillation probabilities in matter. JHEP. Vol. 04. (2004). pp. 078.

A.M. Dziewonski and D.L. Anderson. Preliminary reference Earth model. Phys. Earth Planet. Inter. Vol. 25. (1981). pp. 297.

T. Ohlsson and W. Winter. Could one find petroleum using neutrino oscillations in matter?. Europhys. Lett. Vol. 60. (2002). pp. 34-39.

A. N. Ioannisian and A. Y. Smirnov. Matter effects on thin layers: detecting oil by oscillations of solar neutrinos. preprint, hep-ph/0201012. (2002). <http://arxiv.org/abs/hep-ph/0201012 >.

A.H. Borzabadi and O.S. Fard. Approximate solution of nonlinear FIE of the 1st kind. World Academy of Science, Engineering and Technology. Vol. 33. (2007). pp. 70-73.

NAG Fortran Library Chapter Introduction (D05 – Integral Equations) <http://www.nag.co.uk/numeric/FL/manual/xhtml/D05/d05_intro.xml>

M. Lindner, et al. Tomography of the Earth’s core using Supernova neutrinos. Astropart. Phys. Vol. 19. (2003). pp. 755.

D.F. Hollenbach and J.M. Herndon. Deep-Earth reactor: nuclear fission, helium and the geomagnetic field. PNAS. Vol. 98. (2001). pp. 11085-11090.

K.R. Rao. Nuclear reactor at the core of the Earth!- A solution to the riddles of relative abundances of helium isotopes and geomagnetic field variability. Current Science. Vol. 82. (2002).

R.J. de Meijer, et al. Quest for a nuclear georeactor. Rad. Phys. Chem. Vol. 71. (2004). pp. 769-774.

Les auteurs publiant dans cette revue acceptent les termes suivants :

  1. Les auteurs détiennent le droit d'auteurs et accordent à la revue
    le droit de première publication, avec l’ouvrage disponible simultanément [SPÉCIFIER LA PÉRIODE DE TEMPS] après publication, sous la licence Licence d’attribution Creative Commons qui permet à d'autres de partager l'ouvrage en en reconnaissant la paternité et la publication initiale dans cette revue.
  2. Les auteurs peuvent conclure des ententes contractuelles additionnelles et séparées pour la diffusion non exclusive de la version imprimée de l'ouvrage par la revue (par ex., le dépôt institutionnel ou la publication dans un livre), accompagné d'une mention reconnaissant sa publication initiale dans cette revue.
  3. Les auteurs ont le droit et sont encouragés à publier leur ouvrage en ligne (par ex., dans un dépôt institutionnel ou sur le site Web d'une institution) avant et pendant le processus de soumission, car cela peut mener à des échanges fructueux ainsi qu'à un nombre plus important, plus rapidement, de références à l’ouvrage publié (Consulter The Effect of Open Access).

Downloads

Download data is not yet available.