Abstract
A boundary layer separation on a NACA0012 airfoil at a low Reynolds number is numerically investigated. The governing equations are discretized with the finite volume method. The boundary layer separation is examined through the flow structure. Beyond an angle of attack of 8°, a small separation region is detected near the trailing-edge of the airfoil. As the angle of attack increases, the separation region grows up and moves towards the leading edge. In order to control the separation, a parabolic distribution blowing is applied along the separated region. The effectiveness of the control is shown, leading to the improvement of the lift and the lift to drag ratio. As the blowing jet velocity is increased the size of the separation bubble decreases until it disappears.References
S. Yarusevych, .J. G. Kawall, P. E. Sullivan, Separated-Shear-Layer development on an airfoil at low Reynolds numbers, AIAA Journal, 46 (2008) 3060-3069.
W. Shyy et al, Computational aerodynamics of low Reynolds number plunging pitching and Flexible Wings for MAV Applications, 46th AIAA Aerospace science meeting and exhibit, January 7-10, 2008, Reo, NEVADA.
Md. Mahbub, Y. Zhou, H. V. Yang, The ultra-low Reynolds number airfoil wake, Experimental Fluids, 48 (2010) 81-103.
P. L. Delafin, F. Deniset, J. A. Asotolfi, Effect of the laminar separation bubble induced transition on the hydrodynamic performance of a hydrofoil, European Journal of mechanics B/Fluids, 46 (2014) 190-200.
H. Shan, L Jiang, C. Liu, Direct numerical simulation of flow separation around a NACA0012 airfoil, Computers & Fluids, 34 (2005) 1096-1114.
M. Alam, ND. Sandham, Direct numerical simulation of short laminar separation bubbles with turbulent reattachment, J. Fluid Mech, 410 (2000) 1-28.
S. B. Hazra, A. Jamson, Aerodynamic shape optimization of airfoils in ultra-low Reynolds number flow using simultaneous pseudo-time stepping, Aerospace Computing Lab (ACL) report, 2007-4, 2007.
W. Yuan, M. Khalid, J. Windte, U. Scholz, R. Radespiel, Computational and experimental investigations of low-Reynolds-number flows past an airfoil, The Aeronautical Journal, 111 (2007) 17-29.
Y. Zhou, M. M. Alam, H. X. Yang, H. Guo, D. H. Wood, International Journal of Heat and fluid flow, 32 (2011) 329-339.
S. Rajakumar, D. Ravindran, Computational fluid dynamics of wind turbine blade at various angles of attack and low Reynolds number, International Journal of Engineering Science and Technology, 2 (2010) 6474-6484.
H. Shan, L. Jiang, C. Liu, M. Love, B. Maines, Numerical study of passive and active flow separation control over a NACA0012 airfoil, Computers & Fluids, 37 (2008) 975-992.
K. Yousefi, S. R. Saleh, P. Zahedi, Numerical Study of flow separation control by tangential and perpendicular blowing on the NACA0012 airfoil, International Journal of Engineering, 7 (2013) 10-24.
R. Wahidi, and D. Briges, Effects of distributed suction on an airfoil at low Reynolds number, AIAA Journal, 50 (2012) 523-539.
Y. Hoarau, M. Braza, Y. Ventikos, D. Faghani, First stages of the transition to turbulence and control in the incompressible detached flow around a NACA0012 wing, International Journal of Heat and Fluid Flow, 27 (2006) 878-886.
R. Azima, M. Hasana, M. Alib, Numerical investigation on the delay of boundary layer separation by suction for NACA 4412, Procedia Engineering, 105 (2015) 329-334.
M. Serdar Genç, C. Kaynak, Control of laminar separation bubble over NACA2415 aerofoil at low Re transitional flow using blowing/suction, 13th International Conference on Aerospace Sciences & Aviation Technology, May 26-28, 2009, Cairo, Egypt.
C. Brehm, A. Gross, H. F. Fasel, Open loop flow-control investigation for airfoils at low Reynolds numbers, AIAA Journal, 51 (2013) 1843-1860.
L. Huang, P. G. Huang, R. P. LeBeau, Numerical study of blowing and suction control mechanism on NACA0012 airfoil, Journal of Aircraft, 41 (2004) 1005-1013.
D. A. Anderson, J. C. Tannehill, R. H Pletcher, Computational Fluid Mechanics and Heat Transfer, Hemisphere Publishing Corporation, 1984.
V. Kitsios, D. Rodriguez, V. Theofilis, A. Ooi, J. Soria, Journal of Computational Physics, 228 (2009) 7181-7196.
S. V Patankar, Numerical heat transfer and fluid flow, Hemisphere Publishing Corporation, New York, 1980.
S. Koshizuka, Y. Oka, S. Kondo, A staggered differencing technique on boundary curvilinear grids for incompressible flows along curvilinear or slant walls, Journal of Computational Mechanics, 7 (1990) 123-136.
H. K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: The finite volume method, Longman Group Ltd, Harlow, England, 1995.
M. Hafez, A. Shatalov, E. Wahba, Numerical simulations of incompressible aerodynamic flows using viscous/inviscid interaction procedures, Comput. Methods Appl. Mech. Engrg., 195 (2006) 3110-3127.
D. P. Lockard et al., Evaluation of PowerFlow for aerodynamic applications, Journal of statistical physics, 107 (2002) 423-478.
Y. Peng et al., Application of multi-block approach in the immersed boundary-lattice Boltzmann method for viscous fluid flows, Journal of computational physics, 218 (2006) 460-478.
L. Huang, R. P. LeBeau, P. G. Huang, Optimization of blowing and suction control on NACA 0012 airfoil using genetic algorithm, 42nd AIAA Aerospace Sciences Meeting and Exhibit, January 5-8, 2004, Reno, Nevada.
- Les auteurs détiennent le droit d'auteurs et accordent à la revue
le droit de première publication, avec l’ouvrage disponible simultanément [SPÉCIFIER LA PÉRIODE DE TEMPS] après publication, sous la licence Licence d’attribution Creative Commons qui permet à d'autres de partager l'ouvrage en en reconnaissant la paternité et la publication initiale dans cette revue. - Les auteurs peuvent conclure des ententes contractuelles additionnelles et séparées pour la diffusion non exclusive de la version imprimée de l'ouvrage par la revue (par ex., le dépôt institutionnel ou la publication dans un livre), accompagné d'une mention reconnaissant sa publication initiale dans cette revue.
- Les auteurs ont le droit et sont encouragés à publier leur ouvrage en ligne (par ex., dans un dépôt institutionnel ou sur le site Web d'une institution) avant et pendant le processus de soumission, car cela peut mener à des échanges fructueux ainsi qu'à un nombre plus important, plus rapidement, de références à l’ouvrage publié (Consulter The Effect of Open Access).