WAVE SCATTERING WEDGE IN GAP WEDGE ANTENNAE STRUCTURES.
Keywords:
Electromagnetic wave, scattering, structure, Gap Photonic AntennaeAbstract
Antenna remote sensing deals with the extraction of object information from electromagnetic wave parameters. To fully exploit the potential for quantitative information acquisition, a detailed description of microwave diffusion is required. The research on this subject was mainly devoted to the far-field analysis which assumes an incident plane wave, calculates its scattered field and evaluates the radar cross section (RCS). However, under some practical conditions, far-field analysis is not valid and near-field analysis is required. In this paper, we have given a complete analysis of the near field of a corner structure due to an incident electric field from a linear source or a plane wave in the case of Gap Photonic Antennae. The far-field model, in the case of a linear source exciting the structure, is also analyzed. The interest of this study will structure the modeling process of the fields by having a clear vision of the near field which will bring a maximum of information in the process of remote sensing to help an accurate and correct decision-making.References
J.M Le Caillec, S.Redadaa, C.Sintes, B. Solaiman and M.Benslama : Focusing Problems of a buried point scatterer using a low frequency SAR. IEEE transactions on Aerospace and Electronic Systems, Vol 47, N°1, January 2011, pp438-453.
Zaakouf; S. Readaa, M.Benslama: Closed form of topographic elevation in the context of interferometric synthetic aperture. International Journal of Numerical Modeling, Electronic Networks, Devices and Field, Volume 30, Issue 2, March/April 2017.
Colton D. and Kress R. Integral equation methods in scattering theory; Wiley: Intersciences New York, 1983.
Kouyoumjian R. G and P. H Pathak P. H. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proceedings IEEE 1974; 62 (11), 1448- 1461.
Rao S. M, .Wilton D. R and Glisson A. W. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Transactions on Antenna and Propagation 1982; 30(3), 409-418.
Knott E.F, Shaeffer J.F and Tuley M.T. Radar cross section: Its prediction, measurement and reduction, Dedham, MA: Artech House, 1985.
Blume S and Krebs V, Numerical evaluation of dyadic diffraction coefficients and bistatic radar cross sections for a perfectly conducting semi-infinite elliptic cone. IEEE Transactions on Antenna and Propagation 1998; 46(3), 414-424.
Balanis C. A. Antenna theory: Analysis and design, John Wiley & Sons, 2nd edition, New York, 1997.
Ross R.A. Radar cross section of rectangular flat plate as function of aspect angle. IEEE Transactions on Antenna and Propagation 1966; 14, 329-335.
Downloads
Published
How to Cite
Issue
Section
License
Les auteurs publiant dans cette revue acceptent les termes suivants :- Les auteurs détiennent le droit d'auteurs et accordent à la revue
le droit de première publication, avec l’ouvrage disponible simultanément [SPÉCIFIER LA PÉRIODE DE TEMPS] après publication, sous la licence Licence d’attribution Creative Commons qui permet à d'autres de partager l'ouvrage en en reconnaissant la paternité et la publication initiale dans cette revue. - Les auteurs peuvent conclure des ententes contractuelles additionnelles et séparées pour la diffusion non exclusive de la version imprimée de l'ouvrage par la revue (par ex., le dépôt institutionnel ou la publication dans un livre), accompagné d'une mention reconnaissant sa publication initiale dans cette revue.
- Les auteurs ont le droit et sont encouragés à publier leur ouvrage en ligne (par ex., dans un dépôt institutionnel ou sur le site Web d'une institution) avant et pendant le processus de soumission, car cela peut mener à des échanges fructueux ainsi qu'à un nombre plus important, plus rapidement, de références à l’ouvrage publié (Consulter The Effect of Open Access).